Insights worth sharing

Motives for better Engineering

Coulomb's wedge theory
of earth pressure

Explore horizontal earth pressure,
Coulomb's theory, and its applications.
Compare geotechnical results and
understand the trial wedge method's nuances.

See more
Baltimore bridge collapse:
What structural engineers can do

Explore the technical content on vessel collision
to calculate the annual frequency of bridge component collapse.

See more
Seismic Isolation in Structural Design:
Concepts and Applications

Introducing the concept of seismic isolation design.

See more

Exploring Concrete Shear Equations: θ and β in Design

Concrete Shear Equation

 

Understanding Shear Behavior in Concrete with θ and β

Findings and remarks

 

Optimizing Crack Angles in Concrete Shear Design

Optimum crack angle θ

 

From the previous example, we can catch that there are some possible crack angle ranges for the given εx and vu/f’c. Now our question is which values of θ and β are the optimums? The previous example shows that, without considering longitudinal reinforcements, mostly (not always) the lowest crack angle results in the least number of stirrups. However, with considering longitudinal reinforcements, the optimum crack angle increases. The methodology to find out the optimum crack angle is proposed by Rahal and Collins (Background to the general method of shear design in the 1994 CSA-A23.3 standard, Canadian Journal of Civil Engineering, February 2011).