Insights worth sharing

Motives for better Engineering

Coulomb's wedge theory
of earth pressure

Explore horizontal earth pressure,
Coulomb's theory, and its applications.
Compare geotechnical results and
understand the trial wedge method's nuances.

See more
Baltimore bridge collapse:
What structural engineers can do

Explore the technical content on vessel collision
to calculate the annual frequency of bridge component collapse.

See more
Seismic Isolation in Structural Design:
Concepts and Applications

Introducing the concept of seismic isolation design.

See more

Determining Concurrent Live Load for Strut and Tie Models

Daniel BaxterNov 07, 2023

In the article "strut-and-tie modeling for pier caps", we have discussed the definition of strut-and-tie analysis and how to construct a strut-and-tie model using the example of pier cap. After creating the geometry of a strut-and-tie model, the next step usually is calculating dead and live loads from the superstructure. This article discusses how to determine the boundary loads for a pier cap with a superstructure that has irregular geometries. 

Composite Bridge Modeling Tips: A Comprehensive Guide

Zachary TaylorOct 20, 2023

How to Model the Girder and Deck Connection in Composite Bridge?

 

The way to simulate the connection between the girder and the deck will depend on how we construct the model. In the 2D all-frame composite bridge model shown in Figure 1, all the elements are connected in the grid within the same plane. Because it was modeled with the "all frame" model type in the midas Civil composite bridge wizard, it only consists of a 2-D grid frame composed of beam elements. In this scenario, the software considers the composite section as a lump section that incorporates both the girder section and the deck section. This means that the composite action is transformed into equivalent section properties in midas Civil. 

Understanding Convergence in Curved Girder Analysis

What is Convergence? What is a Convergence Study? 

 

It is easy to obtain the result from bridge finite element analysis, but to get more accurate results requires extra effort. Even the most robust finite element analysis solvers adopt the method that approximates the structural behavior, by minimizing the associated error function compared with the complex function that represents the realistic structural behavior.